This article originally appeared on the RE/MAX Results Blog, and can be viewed in its original context here.
Whether you’re shopping for your first home or looking for your next one, having the proper homeowner’s insurance coverage is crucial. But the question many new homebuyers have is: what exactly is homeowner’s insurance?
Homeowner’s insurance (HOI), also known as home insurance or property insurance, is insurance coverage for a private residence that combines a variety of protections. It is designed to protect against damages to the home itself (the interior and exterior), possessions within the home, and to provide liability coverage against accidents on the property.
Currently in the United States there are seven standard forms of home insurance ranging from HO-1 to HO-8, and each level has varying degrees of protection based on the homeowner’s needs.
Homeowner’s insurance coverage needs are based on a variety of factors, and one in particular is location. For example, if someone lives in an area of the country that is prone to earthquakes or hurricanes, adding policies that cover those natural disasters would be a good move.
Other forms of insurance such as renter’s insurance, designed for renters, only cover the possessions of the renter and certain events that are not covered in the home insurance held by the property owner.
The standard homeowner’s insurance policies include four essential coverage types:
If your home is destroyed or damaged due to a fire, hurricane, hail, lightning or other disasters listed in your policy, your home insurance will pay to rebuild or repair your home.
The typical coverage on your personal belongings (clothes, furniture, electronics, etc) is usually based on a home inventory that you conduct yourself. Your items are covered in case of fire, theft, or other insured instances.
Liability coverage is put in place to cover potential claims stemming from accidents on your property, such as slipping on an icy sidewalk. This includes lawsuits and damages as well.
ALE covers the additional living costs that accrue from an insured accident or disaster. This includes all bills over your typical living expenses, such as hotel fees, that accumulate while you cannot live in your home.
Keep in mind that every home insurance policy is different, will have varying levels of coverage, and should be carefully considered based on your needs. Working with a qualified insurance agent will ensure you find the policy you need to cover your home and belongings in the most cost effective way. Contact your RE/MAX Results agents today for some local recommendations.
Having an appraisal come in lower than expected can be stressful, but it’s not the end of the world! Overpricing occurs in every market condition for many reasons. An abundance of foreclosures in the neighborhood, an over-inflated asking price, and incorrect pricing by the underwriter can all contribute to this awkward situation. But what should you do when the price comes back below expectations?
You may request a value appeal to have the appraiser review their reasoning for not using the similar sales sent by the lender. There may have been an oversight by the appraiser, especially during the busiest seasons.
You can also coordinate with your lender to arrange a second appraisal. Hopefully, you can receive a higher valuation.
If the home’s price was too high to begin with, it’s usually easiest for all parties involved to simply lower the asking price to reflect the low appraisal.
If the appraisal is lower than expected, the buyer may not qualify for the terms in the loan contingency, making them ineligible for the purchase. As long as the purchase contract has been written carefully by a professional, this will require the seller to return the buyer’s deposit upon cancellation.
Of course, each situation is unique and is best navigated with the help of an experienced lender and realtor. Contact me if you have questions!
This article originally appeared on the Today Show website and can be viewed in its original format here.
Nearly 5 million homes don’t have a smoke alarm installed. And in many homes that do, there’s another big problem: As in that house in St. Louis, the smoke alarms don’t work.
In fact, three out of every five people killed in a house fire didn’t have a working smoke alarm. The answers to these three questions could save your life:
In Orlando, Florida, TODAY national investigative correspondent Jeff Rossen accompanied the local fire department as they went door to door, checking homes for safety risks and installing new alarms for free where needed. They encountered many problems, including alarms without batteries, kitchens with no smoke detectors within 10 feet, and even an alarm whose smoke sensor no longer worked, even though it beeped when tested.
That detector was manufactured in 2002, it turned out. “We like to change them out every 10 years,” the Orlando fire chief told Rossen. “Dust starts blocking the sensor; it can no longer see smoke.”
An easy way to test the sensor is the candle test, he explained. Light a candle, then blow it out and place your alarm right over the smoke. It should go off.
Another tip: If you’re worried about forgetting to change the batteries in your smoke detectors, you can buy lithium batteries at any big box store for $5 to $10. They work for 10 years.
This article was originally posted on the University of Minnesota Extension website and was authored by Timothy Larson, Lewis Hendricks, Patrick Huelman, and Richard Stone. It can be viewed in its full, original format here.
An ice dam is a ridge of ice that forms at the edge of a roof and prevents melting snow (water) from draining off the roof. The water that backs up behind the dam can leak into a home and cause damage to walls, ceilings, insulation, and other areas. Figure 1 shows a cross section of a home with an ice dam.
Figure 1. Cross section of a one-and-a-half story house with an ice dam.
There is a complex interaction among the amount of heat loss from a house, snow cover, and outside temperatures that leads to ice dam formation. For ice dams to form there must be snow on the roof, and, at the same time, higher portions of the roof’s outside surface must be above 32°F while lower surfaces are below 32°F. For a portion of the roof to be below 32°F, outside temperatures must also be below 32°F. When we say temperatures above or below 32°F, we are talking about average temperature over sustained periods of time.
The snow on a roof surface that is above 32°F will melt. As water flows down the roof it reaches the portion of the roof that is below 32°F and freezes. Voila! – an ice dam.
The dam grows as it is fed by the melting snow above it, but it will limit itself to the portions of the roof that are on the average below 32°F. So the water above backs up behind the ice dam and remains a liquid. This water finds cracks and openings in the exterior roof covering and flows into the attic space. From the attic it could flow into exterior walls or through the ceiling insulation and stain the ceiling finish.
Nonuniform roof surface temperatures lead to ice dams.
Since most ice dams form at the edge of the roof, there is obviously a heat source warming the roof elsewhere. This heat is primarily coming from the house. In rare instances solar heat gain may cause these temperature differences.
Heat from the house travels to the roof surface in three ways: conduction, convection, and radiation. Conduction is heat energy traveling through a solid. A good example of this is the heating of a cast iron frying pan. The heat moves from the bottom of the pan to the handle by conduction.
If you put your hand above the frying pan, heat will reach it by the other two methods. The air right above the frying pan is heated and rises. The rising air carries heat/energy to your hand. This is heat transfer by convection. In addition, heat is transferred from the hot pan to your hand by electromagnetic waves and this is called radiation. Another example of radiation is to stand outside on a bright sunny day and feel the heat from the sun. This heat is transferred from the sun to you by radiation.
In a house, heat moves through the ceiling and insulation by conduction through the slanted portion of the ceiling (Figure 1). In many homes, there is little space in regions like this for insulation, so it is important to use insulations with high R-value per inch to reduce heat loss by conduction.
The top surface of the insulation is warmer than the other surroundings in the attic. Therefore, the air just above the insulation is heated and rises, carrying heat by convection to the roof. The higher temperatures in the insulation’s top surface compared to the roof sheathing transfers heat outward by radiation. These two modes of heat transfer can be reduced by adding insulation. This will make the top surface temperature of the insulation closer to surrounding attic temperatures directly affecting convection and radiation from this surface.
There is another type of convection that transfers heat to the attic space and warms the roof. In Figure 1, the winding arrow beginning inside the house and going through the penetration in the ceiling, from the light to the attic space, illustrates heat loss by air leakage. In many homes this is the major mode of heat transfer that leads to the formation of ice dams.
Exhaust systems like those in the kitchen or bathroom that terminate just above the roof may also contribute to snow melting. These exhaust systems may have to be moved or extended in areas of high snow fall.
Other sources of heat in the attic space include chimneys. Frequent use of wood stoves and fireplaces allow heat to be transferred from the chimney into the attic space. Inadequately insulated or leaky duct work in the attic space will also be a source of heat. The same can be said about knee wall spaces.
The photograph below shows a single story house with an ice dam. The points of heat loss can be clearly seen as those areas with no snow. The ceiling below this area needs to be examined for air leakage, missing or inadequate insulation, leaky or poorly insulated ductwork, and the termination of a kitchen.
A single-story house with an ice dam. The areas without snow are the points of heat loss.
The photograph below illustrates unusually high heat loss from the roof. There is very little snow left on the roof and at its edge is both an ice dam and a “beautiful” row of icicles.
The unusually high heat loss on this roof has caused both an ice dam and icicles.
So it is primarily heat flowing from the house that is causing the nonuniform temperatures of the roof surface leading to ice dams.
In all Minnesota communities it is possible to find homes that do not have ice dams. Ice dams can be prevented by controlling the heat loss from the home.
Both of these actions will increase the snow load that your roof has to carry because it will no longer melt. Can your roof carry the additional load? If it is built to current codes, there should not be a structural problem. Roofs, like the rest of the home, should have been designed to withstand expected snow loads. In Minnesota, plans showing design details to meet expected snow loads are usually required to receive a building permit. The plans for your home may be on file at your local building inspection office. To help you understand the plans, or if you cannot find plans for your home, you may want to contact an architectural engineering firm. A professional engineer should be able to evaluate the structure of your home and answer your questions about the strength of your roof.
Mechanical attic ventilation IS NOT a recommended solution to ice dams in Minnesota. It can create other attic moisture problems and may cause undesirable negative pressure in the home.
Interior damage should not be repaired until ceilings and walls are dry. In addition, interior repair should be done together with correcting the heat loss problem that created the ice dam(s) or the damage will occur again.
The proper new construction practices to prevent ice dams begin with following or exceeding the state code requirements for ceiling/roof insulation levels.
The second absolutely necessary practice is to construct a continuous, 100% effective air barrier through the ceiling. There should not be any air leakage from the house into the attic space!
Recessed lights, skylights, complicated roof designs, and heating ducts in the attic will all increase the risk of ice dam formation.
Moisture entering the home from ice dams can lead to the growth of mold and mildew. These biologicals can cause respiratory problems. It is important that the growth of mold and mildew be prevented. This can be done by immediately drying out portions of the house that are wet or damp.
University of Minnesota, U.S. Department of Agriculture, and Minnesota Counties cooperating.
$ | ||
% | ||
yrs | ||
% | ||
$ | ||
|
||
Call or Text Me: 651-341-6020
[email protected]
Copyright © 2017 WendyCarson.com - All Rights Reserved. All information deemed reliable but not guaranteed and should be independently verified.
You must be logged in to post a comment.